M1.	(a)	(i)	chloroplast	1
		(ii)	cell wall	1
	(b)	(i)	osmosis accept diffusion	1
		(ii)	cell wall (prevents bursting)	1
	(c)	(i)	carbon dioxide allow correct formula	1
			glucose allow sugar / starch	1
		(ii)	 any two from: light sensitive spot detects light tells flagellum to move towards light more light = more photosynthesis 	2
	(d)	(cell has) larger SA:volume ratio		1
		shor	t (diffusion) distance	

(diffusion) via cell membrane is sufficient / good enough

or

flow of water maintains concentration gradient

[11]

M2.	(a)	LHS = water		
		RHS = gl	lucose	1
	(b)	 to 0 rate 	easure) temperature ignore reference to fair test check that the temperature isn't changing e of reaction changes with temperature nperature is a variable that needs to be controlled allow lamp gives out heat	3
	(c)	(i) 10	correct answer = 2 marks allow 1 mark for: allow 1 mark for correct calculation without removal of anomalous result ie 15	2
		thr	allow ecf from (c)(i) sel on y-axis as 'number of bubbles per minute' ree points correct = 1 mark allow ± 1 mm ur points correct = 2 marks e of best fit = smooth curve	1 2
		(iii) as	distance increases, rate decreases – pro allow yes between 20 – 40	1

but should be a straight line / but line curves - con / not quite pro allow not between 10 - 20 if line of best fit is straight line, allow idea of poor fit

1

(d) any **four** from:

- make more profit / cost effective
- raising temp. to 25 °C makes very little difference at 0.03% CO₂
- (at 20 °C) with CO₂ at 0.1%, raises rate
- (at 20 °C with CO₂ at 0.1%) \rightarrow >3x rate / rises from 5 to 17 although 25 °C \rightarrow higher rate, cost of heating not economical
- extra light does not increase rate / already max. rate with daylight accept ref to profits c.f. costs must be favourable

[17]

M3. (a) to kill virus

or

to prevent virus spreading

1

(b) take (stem) cells from meristem

or

tissue culture

allow take cuttings

1

(c) use Benedict's solution

1

glucoses turns solution blue to orange

1

(d) Level 2 (3–4 marks):

A detailed and coherent explanation is provided. The student makes logical links between clearly identified, relevant points that explain why plants with TMV have stunted growth.

Level 1 (1-2 marks):

Simple statements are made, but not precisely. The logic is unclear.

0 marks:

No relevant content.

Indicative content

- less photosynthesis because of lack of chlorophyll
- therefore less glucose made so
- less energy released for growth
- because glucose is needed for respiration and / or
- therefore less amino acids / proteins / cellulose for growth
- because glucose is needed for making amino acids / proteins / cellulose

ı

[8]

M4.	(a)	6H ₂ O in the correct order		1
		C ₆ H ₁	$_2O_6$	1
	(b)	(i)	control do not accept 'control variable' allow: to show the effect of the organisms or to allow comparison or to show the indicator doesn't change on its own	
		(ii)	snail respires	1
			releases CO ₂	1
		(iii)	turns yellow	1
			plant can't photosynthesise so CO₂ not used up	1
			but the snail (and plant) still respires so CO ₂ produced	1 [8]

M5. (a) methane is produced

ignore bad smell

1

which is a greenhouse gas / causes global warming

1

(b) (9.80 / 0.20 = 49 therefore) 49:1

1

(c) horse (manure)

allow ecf from 11.2

closest to 25:1 (ratio)

1

(d) Level 3 (5-6 marks):

A detailed and coherent explanation is given, which logically links how carbon is released from dead leaves and how carbon is taken up by a plant then used in growth.

Level 2 (3-4 marks):

A description of how carbon is released from dead leaves and how carbon is taken up

by a plant, with attempts at relevant explanation, but linking is not clear.

Level 1 (1-2 marks):

Simple statements are made, but no attempt to link to explanations.

0 marks:

No relevant content.

Indicative content

statements:

- (carbon compounds in) dead leaves are broken down by microorganisms / decomposers / bacteria / fungi
- photosynthesis uses carbon dioxide

explanations:

- (microorganisms) respire
- (and) release the carbon from the leaves as carbon dioxide
- plants take in the carbon dioxide released to use in photosynthesis to produce glucose

use of carbon in growth:

- glucose produced in photosynthesis is used to make amino acids / proteins / cellulose
- (which are) required for the growth of new leaves

6

(e) any **three** from:

(storage conditions)

- (at) higher temperature / hotter
- (had) more oxygen
- (had) more water / moisture
- (contained) more microorganisms (that cause decay)

allow reference to bacteria / fungi / mould

[13]